How to construct Gorenstein projective modules relative to complete duality pairs over Morita rings
نویسندگان
چکیده
Let $\Delta =\left(\begin{smallmatrix} A & {_AN_B}\\ {_BM_A} B \\\end{smallmatrix}\right)$ be a Morita ring with $M\otimes_{A}N=0=N\otimes_{B}M$.We first study how to construct (complete) duality pairs of $\Delta$-modules using $A$-modules and $B$-modules, generalizing the result Mao (Comm. Algebra, 2020, 12: 5296--5310) about over triangular matrix ring. Moreover, we Gorenstein projective modules relative complete $\Delta$-modules. Finally, give an application Ding modules.
منابع مشابه
Gorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
متن کاملRelative Singularity Categories and Gorenstein-projective Modules
We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable cat...
متن کاملPeriodic modules over Gorenstein local rings
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...
متن کاملA Brief Introduction to Gorenstein Projective Modules
Since Eilenberg and Moore [EM], the relative homological algebra, especially the Gorenstein homological algebra ([EJ2]), has been developed to an advanced level. The analogues for the basic notion, such as projective, injective, flat, and free modules, are respectively the Gorenstein projective, the Gorenstein injective, the Gorenstein flat, and the strongly Gorenstein projective modules. One c...
متن کاملFoxby Duality and Gorenstein Injective and Projective Modules
In 1966, Auslander introduced the notion of the G-dimension of a finitely generated module over a Cohen-Macaulay noetherian ring and found the basic properties of these dimensions. His results were valid over a local Cohen-Macaulay ring admitting a dualizing module (also see Auslander and Bridger (Mem. Amer. Math. Soc., vol. 94, 1969)). Enochs and Jenda attempted to dualize the notion of G-dime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2023
ISSN: ['1793-6829', '0219-4988']
DOI: https://doi.org/10.1142/s0219498824501536